Graph-Driven Generative Models for Heterogeneous Multi-Task Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploration for Multi-task Reinforcement Learning with Deep Generative Models

Exploration in multi-task reinforcement learning is critical in training agents to deduce the underlying MDP. Many of the existing exploration frameworks such as E, Rmax, Thompson sampling assume a single stationary MDP and are not suitable for system identification in the multi-task setting. We present a novel method to facilitate exploration in multi-task reinforcement learning using deep gen...

متن کامل

Multi-task Regularization of Generative Similarity Models

We investigate a multi-task approach to similarity discriminant analysis, where we propose treating the estimation of the different class-conditional distributions of the pairwise similarities as multiple tasks. We show that regularizing these estimates together using a leastsquares regularization weighted by a task-relatedness matrix can reduce the resulting maximum a posteriori classification...

متن کامل

Robot Learning with Task-Parameterized Generative Models

Task-parameterized models provide a representation of movement/behavior that can adapt to a set of task parameters describing the current situation encountered by the robot, such as location of objects or landmarks in its workspace. This paper gives an overview of the taskparameterized Gaussian mixture model (TP-GMM) presented in previous publications, and introduces a number of extensions and ...

متن کامل

Multi-Task Learning in Heterogeneous Feature Spaces

Multi-task learning aims at improving the generalization performance of a learning task with the help of some other related tasks. Although many multi-task learning methods have been proposed, they are all based on the assumption that all tasks share the same data representation. This assumption is too restrictive for general applications. In this paper, we propose a multi-task extension of lin...

متن کامل

Scalable Generative Models for Multi-label Learning with Missing Labels

We present a scalable, generative framework for multi-label learning with missing labels. Our framework consists of a latent factor model for the binary label matrix, which is coupled with an exposure model to account for label missingness (i.e., whether a zero in the label matrix is indeed a zero or denotes a missing observation). The underlying latent factor model also assumes that the low-di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i01.5446